节能知识

空压机相关节能改造

发布时间:2019-11-30 14:16:00

作者:瑞泽能源

空压机在工业生产中有着广泛地应用。在名种行业中,它担负着为工厂所有气动元件,包括各种气动阀门,提供气源的职责。因此它运行的好坏直接影响工厂生产工艺。空压机的种类有很多,但其供气控制方式几乎都是采用加、卸载控制方式。例如复盛空压机、德国螺霸螺杆式空压机和尚爱中高压活塞式空压机都采用了这种控制方式。该供气方式虽然原理简单、操作方便,但存在耗电量高、进气阀易损坏、供气压力不稳定等问题。

  空压机在工业生产中有着广泛地应用。在名种行业中,它担负着为工厂所有气动元件,包括各种气动阀门,提供气源的职责。因此它运行的好坏直接影响工厂生产工艺。空压机的种类有很多,但其供气控制方式几乎都是采用加、卸载控制方式。例如复盛空压机、德国螺霸螺杆式空压机和尚爱中高压活塞式空压机都采用了这种控制方式。该供气方式虽然原理简单、操作方便,但存在耗电量高、进气阀易损坏、供气压力不稳定等问题。

空压机节能

  随着我国经济的飞快发展,国家越来越关注高效低耗的技术,而这种技术已受到人们的关注。在空压机供气领域能否应用变频调速技术,节省电能的同时也能改善空压机性能、提高供气品质就成为我们关心的一个话题。

  传统空压机供气系统电能浪费分析

  1传统空压机供气系统电能浪费主要有如下几个方面:

  传统空压机供气系统的工作状态主要有两种:一种是加载状态,另一种是空载状态。

  加载时的电能消耗

  加载状态是,在压力达到最小值后,原控制方式决定其压力会继续上升直到最大压力值。在加压过程中,一定要向外界释放更多的热量,从而导致电能损失。另一方面,高于压力最大值的气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样是一个耗能过程。

  卸载时电能的消耗

  空载状态时,当压力达到压力最大值时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。这种调节方法要造成很大的能量浪费。据我们测算,空压机卸载时的能耗约占空压机满载运行时的10%~25%,这还是在卸载时间所占比例不大的情况下。换而言之,该空压机20%左右的时间处于空载状态,在作无用功。很明显在加卸载供气控制方式下,空压机电机存在很大的节能空间。

  传统空压机供气系统的压力控制是上下限控制,首先根据生产设备的最低压力要求,设定空压机输出压力的下限,也就是空压机开始加载的压力;再在最低压力上加1帕左右,作为空压机输出压力的上限,即开始卸载的压力。空压机的输出工作压力将在上下限之间波动。空压机的功率消耗和输出压力成正比。输出的压力越高消耗的功率也越大,从输出压力的下限到上限的1帕的压差将多消耗总功率的7-10%。

  在传统供气空压机系统中,如果有多台空压机同时运行,每台空压机的输出压力都将随着管网的压力波动而在上下限之间波动,所以每台机都多消耗7-10%的额定功率。

  传统空压机供气系统中运行参数的设定不同也会造成空压机用电量的不同,必须根据用气工况进行设定,才能达到最经济的运行效果。

  传统空压机供气系统由于电机不允许频繁启动,导致在用气量少的时候电机仍然要空载运行,浪费电能。经常卸载和加载导致整个气网压力经常变化,不能保持恒定的工作压力。

  空压机工作原理

  螺杆压缩机的工作原理可分为进气,压缩和排气三个过程。随着转子旋转,每对相互啮合的齿相继完成相同的工作循环。

  进气过程:转子转动时,阴阳转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子齿沟空间与进气口的相通,因在排气时齿沟的气体被完全排出,排气完成时,齿沟处于真空状态,当转至进气口时,外界气体即被吸入,沿轴向进入阴阳转子的齿沟。当气体充满了整个齿沟时,转子进气侧端面转离机壳进气口,在齿沟的气体即被封闭。

  压缩过程:阴阳转子在吸气结束时,其阴阳转子齿尖会与机壳封闭,此时气体在齿沟不再外流。其啮合面逐渐向排气端移动。啮合面与排气口之间的齿沟空间渐渐件小,齿沟的气体被压缩压力提高。

  排气过程:当转子的啮合端面转到与机壳排气口相通时,被压缩的气体开始排出,直至齿尖与齿沟的啮合面移至排气端面,此时阴阳转子的啮合面与机壳排气口的齿沟空间为0,即完成排气过程,在此同时转子的啮合面与机壳进气口之间的齿沟长度又达到最长,进气过程又再进行。

  从上述工作原理可以看出,螺杆压缩机是一种工作容积作回转运动的容积式气体压缩机械。气体的压缩依靠容积的变化来实现,而容积的变化又是借助压缩机的一对转子在机壳作回转运动来达到。

  空压机恒压供气系统案例介绍

  原供气系统介绍

  中联麓谷混凝土公业园供气系统共有三台110KW英格索兰回转式螺杆空气压缩机,原空压机运行方式是采用两台空压机工频供电运行,另一台空压机作备用。

  存在问题是由于工作空压机是用工频供电运行,始终处于满负荷运行,赶产量用气高峰时有气压偏低现象;用气低谷时,特别是节假日休息时,供气压量特别大(供气系统24小时运行)。容易损坏排气阀门或气管爆裂,同时浪费了电能,降低了设备使用寿命。希望恒压供气,三台空压机均衡工作运行。

  针对空压机系统供气控制方式存在的诸多问题,我们对公司三台110KW空压机采用变频调速技术进行恒压供气控制。使用三台132KW电骑士通用型变频器,对该供气系统进行节能改造,根据厂家的要求设计了一套实用性很强的方案,采用一拖一带工频旁路,两台运行一台备用的方式。我们把空压机供气系统的管网压力作为控制对象,用压力变送器SP采集储气罐的压力P转变为电信号送给PID自整定控制仪,与PID自整定控制仪的压力设定值SV 作比较,并根据差值的大小按既定的PID控制模式进行运算,产生控制信号送变频器,通过变频器来控制电机的工作频率与转速,从而使实际压力P始终接近设定压力值SV。还在PID自整定控制仪上预设了报警功能,当测量值超出上

  限设定值时AL1发出报警信号,当测量值低于下限设定值时AL2发出报警信号。通过变频器、压力传感器与PID自整定控制仪的有机结合,构成供气闭环自动控制系统,自动调节空压机的输出压力。使每台空压机的利用率均等,增加系统、管道压力的稳定性和可靠性,方便技术员控制和维护设备。

  该恒压供气控制系统增加工频与变频切换功能,并保留原有的控制和保护系统,另外,采用该方案后,空压机电机从静止到旋转工作可由变频器来启动,实现了软启动,避免了启动冲击电流和启动给空压机带来的机械冲击。

上一篇:中央空调系统节能耗意义

下一篇:节能水泵到底有多节能?跟普通水泵做个比较看看


【相关内容推荐】